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Abstract
We consider a non-Gaussian stochastic process where a particle diffuses in the
y-direction, dy/dt = η(t), subject to a transverse shear flow in the x-direction,
dx/dt = f (y). Absorption with probability p occurs at each crossing of the
line x = 0. We treat the class of models defined by f (y) = ±v±(±y)α where
the upper (lower) sign refers to y > 0 (y < 0). We show that the particle
survives up to time t with probability Q(t) ∼ t−θ(p) and we derive an explicit
expression for θ(p) in terms of α and the ratio v+/v−. From θ(p) we deduce
the mean and variance of the density of crossings of the line x = 0 for this
class of non-Gaussian processes.

PACS numbers: 02.50.−r, 05.40.−a

There has been a resurgence of interest in first-passage problems in recent years [1], particularly
in the context of systems with many degrees of freedom [2]. There are, however, relatively few
exactly solved models involving non-Gaussian processes. This paper is devoted to a class of
such models, involving just two degrees of freedom, for which exact results can be obtained.
These models are most simply described in terms of a particle moving in the two-dimensional
plane (x, y), with stochastic motion in the y-direction and ‘deterministic’ motion in the
x-direction (deterministic in the sense that the velocity in the x-direction depends only on the
y-coordinate, which is itself however a stochastic variable).

The class of models is defined by the following equations:

ẏ = η(t), (1)

ẋ = f (y) = v± sgn(y)|y|α, (2)

where the upper (lower) sign refers to y > 0 (y < 0), dots indicate time derivatives, and
η(t) is Gaussian white noise with mean zero and correlator 〈η(t)η(t ′)〉 = 2Dδ(t − t ′). These
models are non-Gaussian except for the case α = 1, v+ = v− = v, which reduces to the
random acceleration process ẍ = vη(t).

Previous work on this class of models has addressed the first-passage problem in which
the line x = 0 is an absorbing boundary and the particle starts in the half-plane x > 0. It was
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shown [3] that the probability, Q(t), that the particle survives until time t decays as Q(t) ∼ t−θ

for large t, with

θ = 1

4
− 1

2πβ
tan−1

[
γ − 1

γ + 1
tan

(
πβ

2

)]
(3)

where

β = 1

2 + α
, γ =

(
v+

v−

)β

. (4)

The exponent θ takes the value 1/4 for all α for the ‘antisymmetric’ case γ = 1 (for which
f (y) is an odd function) which has a simple explanation [4, 5] in terms of the Sparre Anderson
theorem [6].

In the present paper we consider the case where the line x = 0 is a partially absorbing
boundary, at which the particle is absorbed with probability p at each crossing. We have shown
elsewhere [7] that for such models the survival probability decays at late times as a power
law with an exponent θ that depends, in general, on p: Q(t) ∼ t−θ(p). Explicit analytical
results for θ(p) have been obtained for a number of simple (and not-so-simple) models [7].
We also showed that the function θ(p) determines the moments of the number of crossings
of the boundary x = 0 for the case where there is no absorption. In the present work we use
the methods of [3] to determine the function θ(p) and the method outlined in [7] to investigate
the crossing statistics for the problem without absorption, obtaining closed form results for the
mean and variance of the number of crossings in a given (large) time interval. These results for
the mean and variance are, to our knowledge, the first such results for non-Gaussian processes.

The derivation of θ(p) follows closely that of θ(0) in [3], so we only give the main steps.
The principal difference from the former work lies in the boundary conditions imposed by the
partially absorbing boundary.

From equations (1) and (2) we can write down the backward Fokker–Planck equation

∂Q

∂t
= D

∂2Q

∂y2
± v±(±y)α

∂Q

∂x
, (5)

where Q(x, y, t) is the probability that the particle still survives at time t given that it started
at position (x, y). The partially absorbing boundary at x = 0 implies the boundary conditions

Q(0+,−y, t) = pQ̃(0+, y, t), y > 0 (6)

Q̃(0+,−y, t) = pQ(0+, y, t), y > 0, (7)

where Q̃(x, y, t) is the survival probability for a model in which v+ and v− are interchanged. It
is clear that Q and Q̃ are described by the same value of θ . In fact Q̃(x, y, t) = Q(−x,−y, t),
since after interchanging v+ and v− the system is restored to its original configuration
after a rotation by π about an axis perpendicular to the xy plane. The initial condition is
Q(x, y, 0) = 1 = Q̃(x, y, 0).

Solving the full initial value problem is difficult so we will follow the approach used in
[3] by specializing to the late-time scaling regime where Q(x, y, t) ∼ t−θ(p). This approach
exploits a generalization of the method introduced by Burkhardt [8] for α = 1 = γ (the
random acceleration problem). The idea is to extract explicitly the time dependence t−θ

expected at large t. This gives, asymptotically,

Q(x, y, t) ∼
(

x2β

t

)θ

F±

(
±v±(±y)1/β

Dx

)
, (8)
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and a similar expression for Q̃(x, y, t), with scaling functions F̃±. In equation (8), the
functions F±(z) are the scaling function for y > 0 (+) and y < 0 (−), respectively. The
(dimensional) prefactors (for y > 0 and y < 0) in equation (8) have been omitted since
equation (5) is linear. The functions F+(z) and F−(z) are defined such that the prefactor is
the same for y > 0 and y < 0.

Inserting the form (8) into the backward Fokker–Planck equation (5), we see immediately
that the term ∂Q/∂t leads to a term of order t−(θ+1), which is subdominant for large t and can
therefore be dropped. The remaining terms give

zF ′′
±(z) + (1 − β − β2z)F ′

±(z) + 2β3θF±(z) = 0. (9)

Expressed in terms of the variable u = β2z, this equation becomes Kummer’s equation.
Independent solutions are the confluent hypergeometric functions M(−2βθ, 1 − β, β2z) and
U(−2βθ, 1 − β, β2z) [9]. The function M(−2βθ, 1 − β, β2z) diverges exponentially for
z → ∞, so must be rejected for y > 0. Thus we write

F+(z) = AU

(
−2βθ, 1 − β,

v+β
2y1/β

Dx

)
(10)

F−(z) = BU

(
−2βθ, 1 − β,

−v−β2(−y)1/β

Dx

)
+ CM

(
−2βθ, 1 − β,

−v−β2(−y)1/β

Dx

)
, (11)

with similar equations for F̃±(z) involving amplitudes Ã, B̃ and C̃.
Relations between the coefficients A,B,C and the corresponding tilded variables can

be obtained by imposing the boundary conditions (6) and (7), and requiring continuity of
Q, ∂Q/∂y, Q̃ and ∂Q̃/∂y at y = 0. After some straightforward but lengthy algebra, these
boundary and continuity conditions eventually lead to a consistency condition on θ , which
determines θ = θ(p) as

θ(p) = 1

4
− 1

2πβ
sin−1

(√
δ sin

(
πβ

2

))
, (12)

where

δ = 2p2 cos2
(

πβ

2

)
+ 2 sinh2

(
1
2 ln γ

)
cos(πβ) + cosh(ln γ )

(13)

and we recall that β, γ are defined by equation (4).
The general result, equation (12) can be checked in a number of special cases:

(i) p = 1. In this case δ = 1 and θ = 0. This is clearly correct since for p = 1 there is no
absorbtion and Q(x, y, t) = 1.

(ii) p = 0. For this case, δ = (
√

γ −1/
√

γ )2/[γ + 1/γ + 2 cos(πβ)]. Inserting this into (12),
and carrying out some elementary manipulations, one recovers equation (3), as required.

(iii) γ = 1. This gives δ = p2, and

θ = 1

4
− 1

2πβ
sin−1

(
p sin

(
πβ

2

))
. (14)

The special case, β = 1/3, of this result corresponds to the random acceleration problem
(α = 1) with partial absorption, and gives θ = 1/4 − (3/2π) sin−1(p/2), recovering the
results of Burkhardt [8] and De Smedt et al [10] for this special case. In the following,
we exploit the general result (12) to obtain results for the crossing statistics of the process
defined by equations (1) and (2).
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In order to place the discussion of crossing statistics for non-Gaussian processes in
the proper perspective, we begin with a short discussion of crossing statistics for Gaussian
processes. Within the class of models discussed in this paper, only the case α = 1 = γ ,
corresponding to the random acceleration process, is Gaussian.

For illustrative purposes, we begin with the random acceleration process, ẋ = y, ẏ = η(t)

or, equivalently, ẍ = η(t), with 〈η(t)η(t ′)〉 = δ(t − t ′). For convenience we take the initial
condition x(0) = 0 = ẋ(0). Then x(t) = ∫ t

0 dt ′
∫ t ′

0 dt ′′η(t ′′), and the two-time correlator
is C(t1, t2) = 〈x(t1)(x(t2)〉 = t2t

2
1

/
2 − t3

1

/
6, where we have taken t2 � t1 without loss of

generality. The normalized two-time correlator is

C̃(t1, t2) = C(t1, t2)√
C(t1, t1)C(t2, t2)

= 3

2

(
t1

t2

)1/2

− 1

2

(
t1

t2

)3/2

, (15)

for t2 � t1. Note that C̃(t1, t2) depends on t1, t2 only through the ratio t1/t2. This is an
immediate consequence of the fact that, with the initial condition x(0) = 0 = ẋ(0), there is
no timescale in the problem, so dimensionless correlation functions can only depend on ratios
of times. If the initial position and velocity are non-zero, the scaling form (15) is recovered in
the limit that t1 and t2 are both taken large with the ratio held fixed. It should be noted that this
scaling property of temporal correlations is not restricted to Gaussian processes, but holds for
all the models discussed here.

This scaling property implies that, if one introduces a logarithmic time variable [11, 12],
T = ln t , normalized correlation functions can only depend on differences of T-variables,
i.e. the processes become stationary in logarithmic time. Again, this applies to both the
Gaussian and the non-Gaussian processes that we consider. For the random acceleration
process, it follows immediately from (15) that the normalized correlator in logarithmic time,
f (T ) = 〈X(T )X(0)〉 where X(T ) = x(t)/

√
〈x2(t), is

f (T ) = (3/2) exp(−T/2) − (1/2) exp(−3T/2) (16)

for T � 0 (and f (−T ) = f (T )).
For Gaussian processes there is a major simplification: the two-time correlator implicitly

determines all properties of the system, including the first-passage exponent θ and the crossing
statistics. As an example, consider the mean density, ρ, of zero crossings in logarithmic time.
The mean density ρ is finite only for smooth Gaussian processes whose correlator f (T ) has
the short time behaviour, f (T ) = 1 − aT 2 as T → 0 where a = −f ′′(0)/2 is finite. For such
processes, the mean number of zero crossings of the process X(T ) in time interval T is

〈n〉 =
∫ T

0
dT ′〈δ(X(T ′))|Ẋ(T ′)|〉 = T 〈δ(X(T ′))〉〈|Ẋ(T ′)|〉 (17)

since X(T ) and Ẋ(T ) are uncorrelated for smooth processes, 〈X(T )Ẋ(T )〉 = f ′(0) = 0.
Furthermore, X and Ẋ are normally distributed with variances f (0) = 1 and −f ′′(0),
respectively. It follows that the mean crossing density is given by

ρ = 〈n〉/T = 1

π

√
−f ′′(0), (18)

a result first derived by Rice [13].
In a similar way it is possible to obtain an (albeit rather more complicated) expression for

the variance, 〈n2〉 − 〈n〉2, of the number of crossings in time T, again expressed in terms of
the correlator f (T ), a result due to Bendat [14].

For non-Gaussian processes, this approach no longer works. The first line, 〈n〉 =
T 〈δ(X)|Ẋ)|〉 still holds, but since the stationary distribution of (X, Ẋ) is in general not
known, further progress seems to be impossible. We will show, however, that exact results
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can be obtained for the class of non-Gaussian models discussed in this paper by exploiting our
knowledge of the function θ(p). The connection between the two was first noted in [7].

Working in logarithmic time, as discussed above, we can write the survival probability
Q(T ) for the partial survival problem in the form

Q(T ) =
∞∑

n=0

pnPn(T ), (19)

where Pn(T ) is the probability of the process crossing the line x = 0 n times in the (logarithmic)
time interval T, and pn is the probability of surviving all n crossings. Now Q(T ) decays
asymptotically as Q(T ) ∼ exp(−θ(p)T ), and the right-hand side of equation (19) can be
written in terms of the cumulants of n, to give

exp

( ∞∑
r=0

(ln p)r

r!
〈nr〉c

)
∼ exp (−θ(p)T ) , (20)

for large T, where 〈nr〉c is the rth cumulant of n, and therefore
∞∑

r=0

(ln p)r

r!
〈nr〉c ∼ −θ(p)T , (21)

for large T.
The cumulants of n can now be determined by expanding both sides of equation (21)

around p = 1, by writing p = 1 − ε and equating coefficients of powers of ε, to obtain the
cumulants of n in terms of the derivatives of θ(p) evaluated at p = 1. In this way one obtains

〈n〉 = −θ ′(1)T (22)

〈n2〉c − 〈n〉 = −θ ′′(1)T (23)

etc. This approach gives, for the mean crossing density,

ρ = 〈n〉
T

= 1

2πβ

sin(πβ)

cos(πβ) + cosh(ln γ )
. (24)

For the special case β = 1/3, γ = 1 that corresponds to the (Gaussian) random
acceleration process, we can check equation (24) against the general result (18) that holds for
any Gaussian stationary process. We find that both expressions reduce to ρ = √

3/2π for this
case.

In a similar way we can calculate the second cumulant of the number of crossings by
expanding to second order in 1 − p. The result for 〈n2〉c ≡ 〈n2〉 − 〈n〉2 is

〈n2〉c
T

= 1

2πβ
[2F sin(πβ) − F 2 sin(2πβ)], (25)

where

F = 1/[cos(πβ) + cosh(ln γ )]. (26)

Again, this result can be checked for the random acceleration process β = 1/3, γ = 1, which
is Gaussian. For this case, equation (25) gives 〈n2〉c/T = 2/π

√
3. On the other hand, the

second cumulant can be calculated exactly for any Gaussian process using Bendat’s formula.
This gives the result 2/π

√
3, as expected.

It is noteworthy that for the class of models discussed here, arbitrary cumulants of the
crossing number are readily obtained by simply computing the appropriate derivatives of θ(p),
evaluated at p = 1. Thus a knowledge of θ(p) provides a powerful tool. Even for Gaussian
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processes, a general expression for the moments of n above the second is not available for
models where θ(p) is not known, which is essentially all but a few special models [7].

It is also interesting to compute the mean time intervals (logarithmic scale) l± between
crossings that the particle spends on the positive (negative) side of the X axis. For the special
case γ = 1 (where v+ = v−), it is clear that l+ = l− = 1/ρ with ρ being the mean density
of crossings given by equation (24). However, for arbitrary γ 	= 1, l+ is, in general, different
from l−. Let ρ± denote the mean number of crossings of X = 0 from the right (left) of
the Y axis. Clearly ρ+ = ρ− = ρ/2. To calculate the mean intervals l± in the general
case (γ 	= 1) one can proceed as follows. We consider the normalized process X(τ) in
the logarithmic time scale τ so that it is stationary. Let us first define a new variable, the
‘occupation time’, that measures the fraction of time spent by the process X(τ) above (below)
the X axis, L± = 1

T

∫ T

0 θ(±X(τ)) dτ . Taking the average, and using the stationarity, one gets
〈L±〉 = 〈θ(±X)〉. However, it is evident that 〈L±〉 = ρ±l±. Hence we get an expression for
the mean intervals

l± = 1

ρ±
〈θ(±X)〉. (27)

For the case where one has the symmetry X → −X, such as the case γ = 1, one gets, using
〈θ(X)〉 = 1/2, the expected result l+ = l− = 1/ρ. However, for γ 	= 1, the exact knowledge
of ρ from equation (24) is not enough to calculate the mean size of intervals l±. One needs
to compute, in addition, the quantity 〈θ(±X)〉. To calculate this average we need to know the
stationary probability density P(X), since 〈θ(X)〉 = ∫ ∞

0 P(X) dX.
The calculation of the probability density P(X), for γ 	= 1, is nontrivial. The only

case where we have succeeded in calculating P(X) exactly is the case where α = 0.
In this case, the equation of motion x(t) in the original time t reads, from equation (2),
ẋ = v+θ(y) − v−θ(−y). Then one can write, x(t) = εt + vTt where Tt = ∫ t

0 sign[y(t ′)] dt ′

is the sign-time of an ordinary Brownian motion, ε = (v+ − v−)/2 measures the anisotropy
and v = (v+ + v−)/2. The distribution of Tt for Brownian motion is well known to have
the famous arcsine form of Lévy [15], P(Tt , t) = 1

t
f

(
Tt

t

)
where f (x) = 1/[π

√
1 − x2] for

−1 � x � 1 and f (x) = 0 outside. Using this result, one gets the exact distribution of x(t),
P(x, t) = 1

vt
G

(
x
vt

)
where G(z) = 1/[π

√
1 − (z − ε)2] for −1 + ε/v � z � 1 + ε/v and

G(z) = 0 otherwise. Carrying out the integral of P(x, t) only over the positive (negative) x
axis, one gets 〈θ(±x(t))〉 = 1

2 ± 1
π

sin−1
(

ε
v

)
. Using θ(X) = θ(x) and ρ = 1/[π cosh(ln γ )]

(obtained by putting β = 1/2 in equation (24)) we finally get the exact mean intervals for the
α = 0 case:

l± = 2π cosh(ln γ )

[
1

2
± 1

π
sin−1

(
v+ − v−
v+ + v−

)]
. (28)

The determination of l± for other values of α (including the α = 1 case) remains an open
problem.

In this paper we have calculated the partial survival exponent, θ(p), for a class of (in
general non-Gaussian) stochastic processes describing a random walker moving in a transverse
‘shear’ flow. We have then used the result for θ(p) to derive exact expressions for the first
two cumulants of the crossing number (number of crossings of the line x = 0) working on
a logarithmic timescale where the process is stationary. To our knowledge these are the first
results for the statistics of crossing numbers for any non-Gaussian process. We have checked
that our general result reduces, in special cases, to the known results for the random acceleration
process. We have also computed exactly the mean time intervals between successive crossings
of the y axis for the special case α = 0. The calculation of the mean time intervals for α 	= 0
remains a challenging open problem.
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